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Introduction

Movie studios spend millions on production but not every film makes its money back. In this
project I use machine learning to predict whether a movie will be profitable or not based only on
basic metadata such as budget, ratings, popularity, runtime, release year, and genre.

The goal is to build and compare two models— Logistic Regression and Random Forest—and
see how well they can separate profitable movies from non-profitable ones. I also want to see
which features matter most and what this says about which types of movies tend to make strong
financial returns.



Data

The data comes from the Movies Metadata dataset on Kaggle. After cleaning (removing rows
with missing values and budget or revenue < 0), I ended up with 5,357 movies.

I defined profitability as:

profitable = 1 if revenue = 1.5 x budget

profitable = 0 otherwise

This gives about 59.5% profitable and 40.5% not profitable films (Figure 1).

Basic visual analysis shows:
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Numeric features such as budget_log, vote_count_log, and runtime are right-skewed
(Figure 2).

Drama, Comedy, and Action are the most common genres, but Horror, Animation, and
Science Fiction have the highest profitability rates (Figure 3 & 7).

The correlation heatmap (Figure 4) shows vote_count_log and vote_average are most
positively related to profitability, while release_year has a small negative correlation.

Boxplots by class (Figure 5) indicate profitable movies tend to have higher popularity,
more votes, and slightly higher ratings.

The budget vs. revenue plot (Figure 6) clearly separates profitable vs. not-profitable films
around the 1.5x budget line.
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Preprocessing

Main preprocessing steps:

Dropped rows with missing values in budget, revenue, popularity, vote_average,
vote_count, runtime, release_date, or genres.

Removed movies with non-positive budget or revenue.

Engineered:

[e]

budget_log = loglp(budget)

° vote_count_log = loglp(vote_count)

o

release_year from release_date

o Binary profitable label as described above
Parsed the JSON-like genres field and kept the first genre as main_genre.
One-hot encoded the most frequent genres and grouped the rest into “Other”.

Standardized numeric features for Logistic Regression using StandardScaler.

Split data into 60% train / 20% validation / 20% test, stratified by the profitability label.



Methods

I trained and compared two supervised learning models:
1. Logistic Regression
o Linear model that outputs the probability a movie is profitable.

o Uses L2 regularization and class_weight="balanced" to handle the mild class
imbalance.

o Hyperparameter C was tuned on the validation set.
o Easy to interpret through feature coefficients.

2. Random Forest Classifier

o Ensemble of decision trees built on bootstrap samples with random feature
subsets.

o Captures non-linear relationships and feature interactions.
° Tuned n_estimators, max_depth, min_samples_split, and min_samples_leaf.

o Provides feature importance scores that show which variables drive predictions.

For both models I used accuracy, precision, recall, F1 score, and ROC AUC as evaluation
metrics, plus confusion matrices and ROC curves on the test set.
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Results

Model Setup and Metrics

After tuning on the validation set, I retrained each model on the combined train+validation data

and evaluated on the test set. Key results (Figure 12):

*  Logistic Regression

o Accuracy: 0.733

o Precision: 0.792

o Recall: 0.748

o FI1 Score: 0.769

o ROC AUC: 0.792

* Random Forest

o Accuracy: 0.746

° Precision: 0.772

o Recall: 0.813

o FI1 Score: 0.792

o ROCAUC: 0.812

The Random Forest slightly outperforms Logistic Regression on accuracy, recall, F1 score, and
AUC. The ROC curves (Figure 9) show both models are clearly better than random, with the
Random Forest curve sitting consistently above the Logistic Regression curve.

ROC Curves - Model Comparison (Test Set)
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Confusion Matrices and Trade-offs

Confusion matrices (Figure 8) show:
e  Logistic Regression:
o 477 true positives, 309 true negatives
o 161 false negatives, 125 false positives
. Random Forest:
° 519 true positives, 281 true negatives
o 119 false negatives, 153 false positives

Random Forest catches more profitable movies (higher recall) but also predicts profitability for
more movies that are not actually profitable. In a real studio setting, this might be acceptable if
the cost of missing a potential hit is higher than over-estimating a few weaker projects.

Logistic Regression - Test Set Confusion Matrix Random Forest - Test Set Confusion Matrix
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Feature

Feature Importance and Coefficients

Random Forest feature importance (Figure 10) shows:

*  Top numeric features: vote_count_log, popularity, budget_log, release_year,
vote_average, and runtime.

o Genre features have smaller but non-zero importance; Action, Comedy, Drama, and
Horror are the most influential genres.

Logistic Regression coefficients (Figure 11) show a similar story:

. Positive: vote_count_log, Animation, Horror, Romance, and Comedy increase the
probability of profitability.

*  Negative: budget_log, Mystery, later release_year, and some genres like Drama and
Science Fiction decrease the probability.

Overall, both models agree that audience reach (votes and popularity), decent ratings, and certain
genres are key drivers of movie profitability.

Logistic Regression Coefficients Random Forest Feature Importance
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Conclusions

In this project I built a full machine learning pipeline to predict movie profitability using basic
metadata. Both Logistic Regression and Random Forest perform reasonably well, with test AUC
values around 0.8. The Random Forest model performs best overall, especially in recall and F1
score, and is better at identifying profitable movies.

From the analysis I learned that:

*  Engagement features like vote counts and popularity are more predictive of profitability
than budget alone.

e Some genres (Horror, Animation, Science Fiction) have higher profitability rates than
others.

*  Asimple linear model captures a lot of the signal, but a non-linear ensemble can squeeze
out extra performance.

At the same time, the project has limitations. The profitability label ignores marketing costs and
long-term revenue, and the dataset may be biased toward films with complete metadata. Future

work could include more detailed features (cast, director, studio) and additional models such as
gradient boosting.
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